
MASTERS PROJECT REPORT, JUNE 2025 1

Design, Implementation, and Evaluation of an
Open-RMF-Based Multi-Robot Middleware

Framework on TurtleBot3 Robots
Jerin Peter, Graduate Student, UCR, Dr. Konstantinos Karydis, Faculty Advisor, UCR

Abstract

This project presents the design, implementation, and evaluation of a multi-robot middleware framework based on the
Robotics Middleware Framework (Open-RMF), which was deployed and tested on two TurtleBot3 (TB3) robots. By leveraging
the Cartographer library for simultaneous localization and mapping (SLAM), converting the generated occupancy grid to an RMF-
compatible navigation graph, and employing the Free Fleet reference implementation, a fully operational multi-robot scheduling
and navigation system was demonstrated in both simulation and on physical hardware. The developed framework supports task
auctioning, conflict-free resource scheduling, dynamic path negotiation, and real-time fleet management. This report provides
detailed instructions for environment setup, RMF-Web integration, and scenario creation, presented alongside performance metrics
collected from scaled experiments. Flowcharts, architecture diagrams, and deployment snapshots are used to elucidate system
components and data flow. The systems capability to coordinate two TB3 robots for complex patrol and delivery tasks under
changing conditions is evaluated, highlighting its strengths in coordination, modularity, and extensibility, while also identifying
areas for future improvement.
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I. INTRODUCTION

MULTI-robot systems (MRS) offer significant advantages over single-robot architectures by enabling collaborative task
execution, enhanced operational throughput, and improved system-wide fault tolerance [1], [2], [3]. Foundational work

in the field has addressed core challenges like decentralized control, task allocation, and formation keeping [47]. However,
the practical integration of heterogeneous robot fleets, often sourced from different vendors, presents considerable challenges
in inter-robot coordination, unified path planning, and robust communication [4], [5], [6]. Effective middleware is critical for
abstracting hardware differences and providing common services for tasking and navigation [10]. The Robotics Middleware
Framework (OpenRMF) emerges as a robust solution to these issues by abstracting fleet management, resource negotiation,
and traffic scheduling into a set of high-level, standardized services. This abstraction facilitates seamless interoperability among
diverse robotic platforms [8].

This report details the end-to-end design, implementation, and validation of an OpenRMF based middleware on a fleet of
two TurtleBot3 (TB3) robots. The methodology involved using Cartographer for mapping, converting the resulting maps into
RMF navigation graphs, and employing the Free Fleet (rmf_demos) implementation for multirobot scheduling and control.
The hardware demonstration validates the framework’s capability to coordinate simultaneous and potentially conflicting tasks
(e.g., patrol and delivery routes) under dynamic environmental conditions.

The key contributions of this work are as follows:
• The development of a complete mapping pipeline using Cartographer, including a method for converting its output into

RMF-compliant navigation graphs.
• The integration of OpenRMFs Free Fleet demonstration packages with physical TB3 hardware through the implementation

of a custom fleet adapter.
• The deployment of the RMF–Web visualization suite for real-time fleet management and operational awareness.
• A systematic performance evaluation based on metrics such as task completion time, resource utilization, and conflict

resolution efficiency.
This report is structured as follows. Section II reviews the foundational literature and existing technologies pertinent to

multi-robot middleware. Section III outlines the primary goal and specific objectives of the project. Section IV details the
system setup and configuration. Section V describes the project’s architecture and core methodologies. Section VI presents
the hardware deployment, task definitions, and performance evaluation. Section VII discusses the results and identifies system
limitations and finally concludes the report and suggests avenues for future research and enhancement.
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II. STATE OF THE ART

This section reviews the foundational literature and existing technologies pertinent to multi-robot middleware and coordina-
tion.

A. MultiRobot Systems and Middleware

The challenges of coordinating multiple robots, particularly in shared environments, have led to the development of specialized
middleware solutions. Key problems in MRS that middleware aims to solve include inter-robot coordination, path planning
in dynamic environments, and the arbitration of common resources such as narrow corridors, doorways, and elevators [9],
[10]. Efficiently assigning tasks to the most suitable robots is another critical challenge, with various strategies explored in
literature [11]. Foundational research has explored distributed algorithms for cooperation [47] and market-based mechanisms
for efficient task allocation [32], which remain central concepts in modern fleet managers.

a) ROS 1 and ROS 2: Among the most influential platforms in robotics is the Robot Operating System (ROS), which has
evolved significantly to better support MRS. ROS has become the de facto standard for single-robot applications, providing a
rich ecosystem of software libraries, development tools, and simulation environments like Gazebo and RViz [12]. However, the
custom TCP–based communication middleware of ROS 1 was found to be less suitable for complex multirobot deployments.
Its successor, ROS 2, was built atop the Data Distribution Service (DDS) standard, introducing features such as realtime
communication capabilities, enhanced security protocols, component lifecycle management, and fine-grained Quality of Service
(QoS) controls. These features make ROS 2 a more robust foundation for developing modern MRS applications [13], [14]. The
use of DDS as a communication backend intrinsically addresses many of the service discovery and data transport challenges
inherent in distributed systems [15], though performance can vary between specific DDS implementations [16]. For large-scale
or geographically distributed deployments, protocols like Zenoh can be layered on top to further optimize data routing over
DDS networks [17].

TABLE I: Comparison of Existing Multi-Robot Middleware Frameworks

Middleware Strengths Drawbacks
Orocos (Open Robot Control
Software) [18]

Low-latency, real-time execution; highly config-
urable; run-time introspection.

Complex integration across heterogeneous fleets
(e.g., ROS-based systems); steep learning curve
for real-time scheduling.

CLARAty (Coupled Layer
Architecture for Robotic Au-
tonomy) [19]

Proven on NASA robotic missions; modular and
flexible component layering.

Discontinued; outdated APIs; limited commu-
nity support; poor compatibility with modern
systems.

MoBeX Simple, centralized task dispatch; easy deploy-
ment in static environments.

Poor scalability in dynamic settings; lacks nego-
tiation, fault tolerance, and resource arbitration.

SPICA DDS-backed reliable communication; supports
distributed shared memory and ontology mes-
saging.

Lacks native resource arbitration; DDS setup
complexity; potential latency overhead.

b) Existing MultiRobot Middleware: Beyond the ROS ecosystem, several other middleware frameworks have been pro-
posed to address multi-robot challenges. A selection of notable examples is presented in Table I.

c) Discussion: A comparative analysis reveals that while each of these frameworks offers valuable features, they often
lack key functionalities required for modern, large-scale deployments. The primary deficiencies identified are:

• Resource arbitration for shared spaces (e.g., corridors, pick-up points).
• Distributed conflict resolution mechanisms, such as peer-to-peer bidding or negotiation, which are central to the Multi-

Agent Path Finding (MAPF) problem [20].
• Inherent fault tolerance, including robust agent decommissioning and recommissioning protocols, which requires dedicated

fault detection, identification, and recovery (FDIR) strategies [21].
• Ease of integration across heterogeneous platforms without requiring excessive custom wrappers or adapters.

Modern alternatives like ROS 2 and Open-RMF are designed to address many of these limitations directly.
d) OpenRMF: To address these gaps, Open-RMF was developed as a comprehensive, open-source solution for interoper-

ability. OpenRMF simplifies heterogeneous fleet integration by defining a narrow and standardized set of messages for fleet and
infrastructure (e.g., doors, elevators) integration (rmf_fleet_msgs, rmf_door_msgs). This enables distributed conflict
prevention and resolution, and supports task auctioning (bidding) to assign tasks to the most suitable robot based on availability
and capability [8], [22]. Its core modules-rmf_traffic, rmf_task, rmf_simulation, and rmf_visualizationprovide
scalable and extensible services for scheduling, path planning, and simulation. Recent enhancements include mutex groups for
exclusive resource locking, dynamic robot commissioning/decommissioning, and reservation systems for shared locations like
pickup/dropoff points [23].
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B. Mapping and Navigation Graphs

A prerequisite for autonomous navigation in any MRS is a robust representation of the environment. This is typically
achieved through a two-stage process of mapping and graph generation. Cartographer is a widely-used SLAM library that
generates high-fidelity 2D occupancy grids using graph optimization-based techniques [24]. It stands as a modern alternative
to classic filter-based SLAM approaches like GMapping [25]. The resulting occupancy grids are then converted into RMF-
compatible navigation graphs, which involves extracting lane vertices, edges, and waypoint names, often via the RMF Traffic
Editor GUI [22]. These navigation graphs allow RMF to precompute feasible routes and enable collision-free motion planning
by constraining robot movement to a network of discrete lanes, a common and effective approach in multi-robot traffic
management [26].

C. Free Fleet (rmf demos) Implementation

To facilitate adoption and testing, the Open-RMF project provides a set of demonstration packages, including a reference
implementation known as ’Free Fleet’. The rmf_demos package contains example fleet adapters, launch files, and scenario
configurations that showcase OpenRMFs capabilities in a simulated environment [27]. These demos utilize the Free Fleet
server to manage task bidding, scheduling, and visualization. Adapting rmf_demos to real hardware, as was done in this
project, involves customizing the provided fleet adapters to translate abstract RMF messages into the robot-specific commands
recognized by its native navigation stack.

D. TurtleBot3 Platform

The experimental validation in this work was conducted on the TurtleBot3 platform, chosen for its accessibility and strong
ROS 2 support. The TurtleBot3 (TB3) is an affordable, ROS 2-compatible, differential-drive mobile robot that is used extensively
in robotics education and research [28]. Its compact design, seamless integration with the ROS 2 navigation stack (Nav2) [29],
and official support for SLAM libraries like Cartographer make it an ideal testbed for multirobot experiments. The Nav2 stack
itself is highly modular, supporting various planning algorithms, including state-of-the-art planners like the Smac Planner [30].
Furthermore, the simulation models for the TB3 are well-supported and maintained within the Gazebo robotics simulator [31].

E. Summary

In summary, while the landscape of MRS middleware is diverse, Open-RMF distinguishes itself through a unique combination
of features designed for interoperability and scalability. These features include:

• A Unified Traffic Schedule, which acts as a distributed database for realtime trajectory sharing and deconfliction.
• A Resource Negotiation protocol that enables peertopeer conflict resolution [8].
• A Task Auctioning system that facilitates auction-based task allocation to the most available and capable robot, a well-

studied problem in MRS [32], [33].
• An Extensible Software Development Kit (SDK) with stable C++ and Python APIs that enable rapid integration and

extension for new robot types.
This project leverages these capabilities and adapts them to the TB3 hardware platform to demonstrate practical, real-world
deployment scenarios.

III. OBJECTIVES

Based on the identified gaps in existing solutions and the advanced capabilities of Open-RMF, this project was defined by
a primary goal and a set of specific, measurable objectives.

A. General Objective

The overarching goal of this research is as follows:
This project presents the design, implementation, and evaluation of a multi-robot middleware framework based on
Open-RMF. The proposed framework facilitates dynamic task scheduling, conflict-free navigation, and real-time fleet
management. The system’s performance is validated through both simulation and hardware deployments on a team
of two TurtleBot3 robots.
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B. Specific Objectives

To achieve the general objective, the project was broken down into the following specific aims:
• Environment Setup & Configuration: To document the required software and hardware components for a fully functional

deployment of ROS 2, OpenRMF, Cartographer, and RMF-Web.
• Mapping & Navigation Graph Generation: To utilize Cartographer to map a physical environment and subsequently

convert the generated occupancy grid into an RMF-compliant navigation graph via the Traffic Editor tool.
• Fleet Adapter Development: To implement and validate a custom TB3 fleet adapter that interfaces RMFs rmf_fleet_msgs

with the TB3s native Nav2 navigation stack, ensuring real-time odometry and command relay.
• Simulation Integration: To adapt the rmf_demos (Free Fleet) examples to simulate two TB3 robots in the Gazebo

simulator, thereby validating task bidding, traffic negotiation, and RMF-Web visualization prior to hardware deployment.
• Hardware Deployment: To deploy the complete software stack on two physical TB3 robots and execute patrol and

delivery tasks in a laboratory environment, while measuring key performance metrics.
• Evaluation & Analysis: To collect and analyze empirical data from both simulation and hardware experiments to evaluate

system effectiveness, identify performance bottlenecks, and propose improvements for future work.

IV. ENVIRONMENT SETUP AND CONFIGURATION

This section details the hardware and software prerequisites, along with the configuration steps required to replicate the
experimental environment.

A. System Requirements

The successful deployment of the described system is contingent upon the following hardware and software components:
• Operating System: Ubuntu 24.04 LTS
• Robotics Software: ROS 2 Jazzy Jellisco
• Simulation Environment: Gazebo Harmonic
• Middleware: Open-RMF v2.0.3 (rmf_core, rmf_demos, rmf_visualization, rmf_simulation)
• Development Tools: Python 3.8, pip, colcon, rosdep
• Web Dashboard Tools: Node.js 16, pnpm (for RMF-Web)
• Hardware: TurtleBot3 Burger (2 units), each with an onboard Raspberry Pi 4, and a shared Wi-Fi network.

B. ROS 2 and Open-RMF Installation

The foundational software layers consist of the Robot Operating System 2 and the Open-RMF packages. Installation should
proceed by following the official ROS 2 Jazzy documentation to install ROS 2 and its core packages [34]. Subsequently,
Open-RMF v2.0.3 is installed by cloning the rmf_core and rmf_demos repositories into a colcon workspace and building
from source [22]. It is crucial to source both the ROS 2 environment script (/opt/ros/jazzy/setup.bash) and the new
RMF workspace script (/̃rmf_ws/install/setup.bash) in the shell environment.

C. Cartographer and Map Generation

Environment mapping was performed using the Cartographer SLAM package to produce a 2D occupancy grid. The ROS
2 branch of Cartographer is used to generate a high-fidelity 2D map of the laboratory environment [24]. After building the
Cartographer workspace, the SLAM node is launched on a TB3, which is then teleoperated throughout the environment. The
primary outputs of this process are:

• map.pgm: An image file representing the 2D occupancy grid.
• map.yaml: A metadata file containing the map’s resolution, origin, and other properties.

These files serve as the input for the Traffic Editor in the next stage.

D. Traffic Editor and Navigation Graph Generation

The generated occupancy grid was then manually converted into a semantic navigation graph using the RMF Traffic Editor.
This GUI-based tool facilitates the creation of RMF navigation graphs by guiding the user through the following steps:

1) Creating a new building model (e.g., Lab1 - CRIS).
2) Importing the .pgm occupancy grid as a floor plan.
3) Adding vertices at key navigational points, such as corridor intersections and room entrances.
4) Drawing environmental features like walls and floor polygons for visualization.
5) Placing functional elements such as doors and setting their motion directions.
6) Defining lanes as directed edges between vertices to represent valid paths.
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7) Setting scale measurements to ensure the graph corresponds to real-world dimensions.
8) Adding robot spawn points and charger locations.
9) Defining mutex groups to control access to single-occupancy zones like narrow passages.

10) Exporting the final building model (*.building.yaml) and its associated navigation graph (nav_graphs/1.yaml).
The exported files are stored in a dedicated project directory, as shown in the example workspace structure in Appendix B. The
relationship between the Traffic Editor’s graphical representation and the resulting simulation world is illustrated in Figure 1.

Fig. 1: The RMF Traffic Editor GUI (left) showing the creation of a *.building.yaml file, and the corresponding Gazebo
world (*.world) on the right.

E. RMF-Web Dashboard
For real-time monitoring and task management, the RMF-Web visualization dashboard was employed. RMF-Web provides

a web-based interface for live fleet management. After installing Node.js and pnpm, the rmf-web repository is cloned, its
dependencies are installed via pnpm install, and the server is launched with pnpm start. The dashboard becomes
accessible at http://localhost:3000, displaying robot positions, active tasks, and the building layout in real time, as
shown in Figure 2. The interface provides dedicated views for managing the task queue (Figure 2a) and visualizing the fleet on
the map (Figure 2b). The design of such an interface is a key aspect of Human-Robot Interaction (HRI), as it directly impacts
an operator’s situational awareness and cognitive load [35].

(a) The task queue view in the RMF-Web GUI.
(b) The map view in the RMF-Web GUI, showing waypoints and
the map overlay.

Fig. 2: Screenshots of the RMF-Web Dashboard, illustrating the task and map views.

F. TurtleBot3 Environment
The physical robot setup for each TurtleBot3 unit required specific onboard configurations. Each TB3 (Burger model) is

equipped with a Raspberry Pi 4 running ROS 2 Jazzy. The TURTLEBOT3_MODEL environment variable must be set to
burger. For multi-robot communication, each TB3 must be on the same Wi-Fi network as the host PC, and either static IP
addresses or unique ROS 2 domain IDs must be configured to prevent network conflicts. Remote access to each robot via SSH
is recommended for efficient remote launching of nodes.

V. SYSTEM ARCHITECTURE AND METHODOLOGY

This section provides a detailed description of the system’s architecture, the data flow between components, and the
methodologies used for mapping, control, and tasking.
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A. Overall System Architecture

Figure 3 presents a high-level overview of the multi-robot system architecture. The system is composed of the following
primary components:

• Host PC: Runs ROS 2 Jazzy, Cartographer for localization, the core Open-RMF services (rmf_core, rmf_demos),
the RMF-Web dashboard, and the Free Fleet server node.

• TB3 Robots (TB31, TB32): Each is equipped with a Raspberry Pi 4 running ROS 2 Jazzy, the Nav2 stack for autonomous
navigation, and a custom-developed fleet adapter.

• Traffic Schedule Database (rmf_traffic): A distributed ledger that enables unified trajectory sharing and proactive
deconfliction between robots.

• Reservation Service: Arbitrates access to shared resources and locations, such as pickup/drop-off points or charging
stations.

• RMF-Web Dashboard: A graphical interface for real-time fleet visualization and user-initiated task dispatching.
The communication between the Host PC and the robot fleet is managed by a Zenoh router, as depicted in Figure 3. The Free

Fleet adapter on the server publishes commands using robot-specific namespaces (e.g., /robot1/navigate_to_pose).
The Zenoh router directs these messages to the appropriate robot, where a Zenoh bridge translates them into native ROS 1
or ROS 2 topics. This decoupling allows the system to seamlessly manage a heterogeneous fleet, including robots running
different ROS distributions, enhancing scalability and flexibility [17].

Fig. 3: The communication architecture illustrating data flow from the Free Fleet adapter via the Zenoh router to individual
robots. The use of Zenoh bridges enables interoperability between ROS 1 and ROS 2 agents in a single fleet.

B. Environmental Representation

The foundation of the system’s methodology is a robust, multi-layered representation of the environment. This was created
using the pipeline detailed in the Environment Setup section, which includes generating a 2D occupancy grid with Cartographer
(see Sec. IV-C) and converting it into a semantic navigation graph using the RMF Traffic Editor (see Sec. IV-D). This graph
serves as the primary data structure for all RMF scheduling and path-planning services.

C. Free Fleet Integration and Control

The Free Fleet approach enables RMF to command custom mobile robots. Figure 4 illustrates the generalized architecture,
where a Full-Control Fleet Adapter and a ROS 2 Free Fleet Server communicate with multiple robot clients. This design is
agnostic to the underlying robot’s software stack (e.g., ROS 1, ROS 2, or a non-ROS system), provided a compatible client is
running on the robot. This project uses specific fleet and robot configuration files to define the capabilities and properties of
the TB3 fleet. Example snippets of these configurations are provided in Appendix B.
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Fig. 4: A generalized block diagram showing the Full-Control Fleet Adapter and ROS 2 Free Fleet Server communicating with
multiple Free Fleet Clients (ROS 1, ROS 2, or custom).

D. Fleet Adapter Logic

The custom TB3 fleet adapter serves as the critical bridge between the abstract commands of RMF and the concrete execution
layer of the Nav2 stack. Its highlevel logic is organized as follows:

• Initialization: A ROS 2 node named tb3_fleet_adapter is initialized.
• Subscriptions: The adapter subscribes to RMF command topics.

– /lab1/destination_requests (Message: rmf_fleet_msgs/DestinationRequest)
– /lab1/mode_requests (Message: rmf_fleet_msgs/ModeRequest)

• Publications: The adapter publishes robot state information at a regular interval (e.g., 10 Hz).
– /lab1/fleet_states (Message: rmf_fleet_msgs/FleetState)

• Callbacks and Actions:
– On receiving a DestinationRequest, the adapter extracts the target waypoint, converts its graph coordinates to

map coordinates, creates a NavigateToPose action goal, and sends this goal to the Nav2 action server.
– On receiving a ModeRequest, the adapter pauses or resumes navigation. A PAUSE command cancels the current

Nav2 goal, while a RESUME command re-sends the last goal.
– Periodically, the adapter queries the current TB3 pose from Nav2 feedback, populates a RobotState message with

its name, battery level, location, and velocity, and publishes this information in a FleetState message.
The logical flow of the fleet adapter is depicted in Figure 5.

Adapter Node Start

Subscribe to RMF Messages

on DestinationRequest on ModeRequest

Send Nav2
NavigateToPose Goal

Cancel / Resume
Nav2 Goal

Publish FleetState

Fig. 5: A flowchart illustrating the Fleet Adapter’s primary workflow.
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E. Simulation-based Validation

To validate all configurations prior to hardware deployment, the system was first run in simulation. This was achieved
by adapting the rmf_demos_gzoffice.launch.xml Free Fleet example to load two TB3 models into the Gazebo
simulator and start all required Open-RMF services. While simulation is invaluable for accelerating development, it is critical
to acknowledge the ”reality gap,” where discrepancies between simulated and real-world physics and sensor models can lead
to divergent behaviors on physical hardware [36]. An example of the Gazebo simulation, overlaid with the RMF-Web user
interface for monitoring, is shown in Figure 6. Techniques such as domain randomization can be employed to help mitigate
these effects [37].

Fig. 6: The simulation environment showing robot navigation, with the RMF-Web UI overlay indicating task and robot status.

F. Task Definition and Dispatching

Tasks within the RMF ecosystem are defined and dispatched as ROS 2 actions using nodes from the rmf_task_ros2
package. For this project, the following task types were configured:

• Patrol Task: A task requiring a robot to visit a sequence of waypoints in a continuous loop (e.g., TB31 patrols between
start_pose and cris_meeting_room for a total of 2 loops).

• Delivery Task: A multi-stage task requiring a robot to move from a starting location to a pickup point, then to a drop-off
point, and finally back to a designated charger location.

• GoTo Task: A simple task involving single waypoint navigation (e.g., travel to cris_meeting_room).
The assignment of these tasks is handled via a market-based bidding mechanism, a common and effective strategy for dynamic
task allocation in MRS [32], [38], as shown in Figure 7.



MASTERS PROJECT REPORT, JUNE 2025 9

Fig. 7: The task bidding process: The Task Dispatcher issues a bid notice; each Fleet Adapter evaluates the task and returns a
cost proposal; the dispatcher then selects the best bid and assigns the task accordingly.

VI. HARDWARE DEPLOYMENT AND EVALUATION

This section describes the physical setup, the process for launching the system on hardware, and the results of an experimental
evaluation scenario.

A. Physical Setup

The hardware deployment utilized the following physical setup:
• TB3 Robots: The fleet consisted of two TurtleBot3 units, designated TB31 and TB32. Each robot was equipped with an

LDS-01 LiDAR sensor and an onboard Raspberry Pi 4. Each ran its respective navigation stack (Nav2 for ROS 2) and
the custom fleet adapter node. The physical robots used for the hardware validation are shown in Figure 8.

• Network: All devices, including the host PC and both TB3 units, were connected to a single 5GHz Wi-Fi network with
static IP assignments to ensure stable communication.

Fig. 8: The physical TurtleBot3 robots (TB3–1 and TB3–2) used in the experiments.

B. Launching RMF on Hardware

Deployment on the physical hardware was initiated using the following procedure. An SSH connection was established to
each TB3 unit to set the ROS 2 domain ID and source the required ROS 2, Cartographer, and RMF workspaces. On the host
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PC, the Open-RMF core nodes and the RMF-Web dashboard were launched. Concurrently, on each TB3, the Nav2 stack and
the custom fleet adapter were started. Successful initialization was verified by confirming that both TB3 robots appeared in
the ”Robots” list within the RMF-Web dashboard. The specific commands used for this process are detailed in Appendix C.

C. Scenario 1: Parallel Patrol with Shared Space

An experiment was designed to evaluate the system’s ability to manage simultaneous tasks that involve a shared, contested
space.

a) Task Setup: The following two tasks were dispatched concurrently from the RMF-Web interface:
• TB3–1 Task: Navigate between waypoint start_pose and waypoint cris_meeting_room, completing 5 round-

trips.
• TB3–2 Task: Navigate between waypoint start_pose and waypoint maker_space, completing 5 round-trips.

The paths for these two tasks overlap in a central corridor, which was defined as a mutex-protected zone in the navigation graph.
Figure 9 provides a visual representation of the robots operating within the physical environment, with the RMF navigation
graph lanes and waypoints superimposed.

Fig. 9: The TurtleBot3 robots operating in the physical lab environment, with an overlay of the RMF navigation graph showing
waypoints and travel lanes.

b) Expected Behavior: The expected sequence of events for this scenario was as follows:
1) TB3–1 is assigned its patrol task, while TB3–2 is assigned its own patrol task.
2) Both robots commence their respective tasks simultaneously and follow paths along the predefined navigation graph.
3) The central corridor, which is traversed by both robots, is protected by a mutex group to prevent simultaneous entry and

potential collision.
4) If both robots approach the mutex-protected corridor at the same time, RMF’s rmf_traffic scheduler facilitates a

distributed negotiation. The robot that is granted priority proceeds, while the other waits at the entrance to the mutex
zone.

5) Each robot successfully completes its 5 round-trips without collision or deadlock, demonstrating effective conflict resolution
and path coordination.
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c) Performance Metrics: The following performance metrics were collected during the experiment:
• Task Completion Time: The total time elapsed from task dispatch to final completion for each robot.
• Wait Time: The average and maximum time a robot spent waiting at the entrance to the corridor mutex zone.
• Negotiation Overhead: The number of negotiation messages exchanged and the average duration of a negotiation event.
• System Load: The CPU utilization on the host PC and the average network latency to the TB3 units during the experiment.

d) Results: The quantitative results from the experiment are summarized below:
• The average round-trip time for TB3–1 (start ↔ cris meeting room) was 185 seconds (3 minutes, 5 seconds).
• The average round-trip time for TB3–2 (start ↔ maker space) was 193 seconds (3 minutes, 13 seconds).
• The average wait time at the corridor mutex was 2.4 seconds.
• A total of 12 negotiation message sets were exchanged (6 per robot), with an average negotiation duration of 0.08 seconds.
• The host PC CPU usage remained between 25-35%, and the average network latency to the TB3s was 15 ms.

VII. DISCUSSION AND CONCLUSION

This section synthesizes the projects key findings, draws overarching conclusions, and outlines promising directions for
future work.

The implemented Open-RMF system exhibited several noteworthy strengths. Its modular and extensible architectureespecially
the fleet-adapter abstractionenabled the seamless integration of new robot types with minimal changes to the core, nurturing
a vendor-agnostic ecosystem [8]. The combination of mutex groups, a central traffic scheduler, and advanced reservation
logic delivered proactive, smooth conflict resolution that outperformed purely reactive avoidance schemes [39]. Real-time
visualisation through the RMF-Web dashboard further bolstered operator trust by presenting live robot positions, task progress,
and resource claims [40]. Finally, the built-in decommission/recommission workflow provided a first line of fault tolerance:
when a robot was removed, its active task was automatically re-auctioned and reassigned within seconds, illustrating baseline
system robustness [41].

Despite these advantages, several limitations surfaced. Generating navigation graphs with Traffic Editor remains a tedious,
error-prone manual exercise for large sites; automating topological-graph extraction from metric maps is therefore still an open
research problem [42]. The current prototype is also tightly coupled to Nav2; platforms lacking a Nav2-compatible interface
would require substantial additional adapter layers, epitomising the last-mile integration challenge in robotics middleware.
Moreover, the negotiation protocol proved sensitive to network conditions: round-trip latencies beyond roughly 50 ms noticeably
slowed negotiations and occasionally induced deadlocks, echoing known DDS issues on lossy networks [43]. Finally, the
Raspberry Pi 4 onboard the TurtleBot3 constrained simultaneous SLAM and navigation, underscoring the cost of deploying
resource-heavy components on low-power compute.

Operational experience crystallised three major lessons. First, rigorous time synchronisation across all nodesfleet adapter,
Nav2, RMF core, and Cartographeris essential; any clock drift between simulated and wall time manifests as erroneous position
estimates and failed plans. Second, mutex zones must be defined with appropriate granularity: corridor-wide zones induced
needless queuing, whereas finer segmentation markedly improved throughput. Third, the weighting used during task bidding
(e.g., travel distance versus battery level) strongly affects load balance; careless tuning can starve low-battery robots, whereas
calibrated weights promote equitable task distribution [10].

Overall, the project validated the feasibility of deploying Open-RMF on resource-constrained TurtleBot3 robots. Real-
time scheduling, proactive conflict avoidance, reservation-based execution, and clear operator oversight were achieved in both
simulation and hardware trials. Performance tests showed efficient task completion, modest negotiation overhead, and graceful
recovery from single-robot faults, confirming Open-RMFs maturity for scalable, interoperable multi-robot deployments.

Looking forward, several avenues merit exploration. (i) Automating navigation-graph generation from occupancy grids
would drastically reduce setup time [44]. (ii) A Rust-based re-implementation of key RMF modules (e.g., rmf_traffic,
rmf_task) could yield memory-safe, high-performance concurrency [23]. (iii) Broadening platform supporte.g., ClearPath
Husky, MiR, or AGVs conforming to VDA 5050will enable heterogeneous-fleet studies and accelerate industry adoption [45].
(iv) Adaptive QoS settings and predictive deadlock-avoidance techniques could make negotiations more resilient to high or
variable network latency. (v) Finally, large-scale experiments with 810 robots in warehouse-like environments are essential
to stress-test the traffic-negotiation algorithms under the dense conditions characteristic of modern multi-agent path-finding
scenarios [46].
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APPENDIX A
LIST OF ABBREVIATIONS

• DDS: Data Distribution Service
• FDIR: Fault Detection, Identification, and Recovery
• GUI: Graphical User Interface
• HRI: Human-Robot Interaction
• MAPF: Multi-Agent Path Finding
• MRS: Multi-Robot System
• PGM: Portable Gray Map
• QoS: Quality of Service
• RMF: Robotics Middleware Framework
• ROS: Robot Operating System
• SDK: Software Development Kit
• SLAM: Simultaneous Localization and Mapping
• TB3: TurtleBot3
• YAML: YAML Aint Markup Language

APPENDIX B
EXAMPLE CONFIGURATION SNIPPETS

This appendix provides examples of the YAML configuration files and the overall file structure used in the project.

A. RMF Project Workspace Structure

A structured project workspace is recommended for managing the various configuration and asset files. A typical structure
under /̃rmf_ws/src/ is as follows:

rmf_ws/src/
project_assets/ % Copied from rmf_demos/rmf_demos_assets
project_fleet_adapter/ % Custom TB3 fleet adapter source code
project_maps/ % Custom maps and navigation graphs

Lab1/
Lab1.building.yaml
nav_graphs/

1.yaml
floor_plans/

project_config/ % Launch and parameter configuration files
launch/

common.launch.xml
Lab1.launch.xml
simulation.launch.xml

config/
Lab1/

tb3_fleet_config.yaml
tb3_robot1_config.yaml

project_simulation/ % Gazebo simulation models and launch files
launch/

simulation.launch.xml
project_tasks/ % Custom task dispatching scripts
rmf_ws_installation_readme.md % Project documentation

B. TB3 Fleet Configuration (fleet.yaml)

The following YAML snippet shows a minimal TB3 fleet configuration used by the RMF Free Fleet server.

Listing 1: Example fleet configuration file.
fleet_name: tb3_fleet
fleet_manager:
user: "some_user"
password: "some_password"
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server_uri: "http://localhost:8000"
task_capabilities:
loop: true
delivery: false
cleaning: false

C. TB3 Robot Configuration (robot.yaml)

This robot-specific YAML file describes the properties and capabilities of an individual TB3 robot for use by the fleet
adapter.

Listing 2: Example robot configuration file.
name: tb3_1
initial_pose:
x: 0.0
y: 0.0
yaw: 0.0
map_name: "L1"

rmf_fleet:
name: "tb3_fleet"
robot_type: "tb3_burger"
motion:
linear_velocity: 0.22 # m/s
angular_velocity: 1.0 # rad/s

battery:
capacity: 300.0 # Wh
charging_waypoint: "lab_charger1"
charge_duration: 1800 # seconds

APPENDIX C
LAUNCH COMMANDS FOR HARDWARE DEPLOYMENT

This appendix details the commands required to launch the full hardware stack, broken down by machine. These commands
should be executed in separate terminals.

A. Commands for the Host PC

Execute the following commands on the central host PC that runs the core RMF services.

Listing 3: Commands to launch the core RMF services on the host PC.
# Navigate to your RMF workspace
cd ˜/rmf_ws

# Source the workspace
source install/setup.bash

# Launch the main project configuration for the hardware test
ros2 launch project_config Lab1.launch.xml use_sim_time:=false failover_mode:=false
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